Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(10): e2305467, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875633

RESUMO

Clean water is one of the most important resources of the planet but human-made contamination with diverse pollutants increases continuously. Microplastics (<5 mm diameter) which can have severe impacts on the environment, are present worldwide. Degradation processes lead to nanoplastics (<1 µm), which are potentially even more dangerous due to their increased bioavailability. State-of-the-art wastewater treatment plants show a deficit in effectively eliminating micro- and nanoplastics (MNP) from water, particularly in the case of nanoplastics. In this work, the magnetic removal of three different MNP types across three orders of magnitude in size (100 nm-100 µm) is investigated systematically. Superparamagnetic iron oxide nanoparticles (SPIONs) tend to attract oppositely charged MNPs and form aggregates that can be easily collected by a magnet. It shows that especially the smallest fractions (100-300 nm) can be separated in ordinary high numbers (1013  mg-1 SPION) while the highest mass is removed for MNP between 2.5 and 5 µm. The universal trend for all three types of MNP can be fitted with a derived model, which can make predictions for optimizing SPIONs for specific size ranges in the future.

2.
Adv Sci (Weinh) ; 10(32): e2302495, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37807816

RESUMO

Beyond their CO2 emittance when burned as fuels, hydrocarbons (HCs) serve as omnipresent raw materials and commodities. No matter if as liquid oil spills or the endless amounts of plastic roaming the oceans, HCs behave as persistent pollutants with water as main carrier to distribute. Even if their general chemical structure [-(CH2 )n -] is quite simple, the endless range of n leads to contaminations of different appearances and properties. A water remediation method based on superparamagnetic iron oxide nanoparticles (SPIONs) modified with self-assembled monolayers of alkyl phosphonic acid derivatives is presented. These molecules enable the SPIONs to non-covalently bind HCs, independently from the molecular weight, size and morphology. The attractive interaction is mainly based on hydrophobic and Coulomb interaction, which allows recycling of the SPIONs. The superparamagnetic core allows a simple magnetic collection and separation from the water phase which makes it a promising addition to wastewater treatment. Agglomerates of collected plastic "waste" even exhibit superior adsorption properties for crude oil, another hydrocarbon waste which gives these collected wastes a second life. This upcycling approach combined with presented recycling methods enables a complete recycling loop.

3.
Small ; 19(36): e2301774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127863

RESUMO

Area-selective atomic layer deposition (AS-ALD) is a bottom-up nanofabrication method delivering single atoms from a molecular precursor. AS-ALD enables self-aligned fabrication and outperforms lithography in terms of cost, resistance, and equipment prerequisites, but it requires pre-patterned substrates and is limited by insufficient selectivity and finite choice of substrates. These challenges are circumvented by direct patterning with atomic-layer additive manufacturing (ALAM) - a transfer of 3D-printing principles to atomic-layer manufacturing where a precursor supply nozzle enables direct patterning instead of blanket coating. The reduced precursor vapor consumption in ALAM as compared with ALD calls for the use of less volatile precursors by replacing diethylzinc used traditionally in ALD with bis(dimethylaminopropyl)zinc, Zn(DMP)2 . The behavior of this novel ZnO ALAM process follows that of the corresponding ALD in terms of deposit quality and growth characteristics. The temperature window for self-limiting growth of stoichiometric, crystalline material is 200-250 °C. The growth rates are 0.9 Å per cycle in ALD (determined by spectroscopic ellipsometry) and 1.1 Å per pass in ALAM (imaging ellipsometry). The preferential crystal orientation increases with temperature, while energy-dispersive X-ray spectroscopic and XPS show that only intermediate temperatures deliver stoichiometric ZnO. A functional thin-film transistor is created from an ALAM-deposited ZnO line and characterized.

4.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36234596

RESUMO

Aliovalent-doped metal oxide nanocrystals exhibiting localized surface plasmons (LSPRs) are applied in systems that require reflection/scattering/absorption in infrared and optical transparency in visible. Indium tin oxide (ITO) is currently leading the field, but indium resources are known to be very restricted. Antimony-doped tin oxide (ATO) is a cheap candidate to substitute the ITO, but it exhibits less advantageous electronic properties and limited control of the LSPRs. To date, LSPR tuning in ATO NCs has been achieved electrochemically and by aliovalent doping, with a significant decrease in doping efficiency with an increasing doping level. Here, we synthesize plasmonic ATO nanocrystals (NCs) via a solvothermal route and demonstrate ligand exchange to tune the LSPR energies. Attachment of ligands acting as Lewis acids and bases results in LSPR peak shifts with a doping efficiency overcoming those by aliovalent doping. Thus, this strategy is of potential interest for plasmon implementations, which are of potential interest for infrared upconversion, smart glazing, heat absorbers, or thermal barriers.

5.
Small ; 18(15): e2107513, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253355

RESUMO

Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods. Herein, the indicators of mechanical damage in the form of particles are reported, which can readily be integrated into coatings. Shear stress-induced damage is indicated by the particles via a color change. The particles are designed as core-shell supraparticles. The supraparticle core is based on rhodamine B dye-doped silica nanoparticles, whereas the shell is made of alumina nanoparticles. The alumina surface is functionalized with a monolayer of a perylene dye. The resulting core-shell supraparticle system thus contains two colors, one in the core and one in the shell part of the architecture. Mechanical damage of this structure exposes the core from the shell, resulting in a color change. With particles integrated into a coating lacquer, mechanical damage of a coating can be monitored via a color change and even be related to the degree of oxygen penetration in a damaged coating.


Assuntos
Nanopartículas , Dióxido de Silício , Óxido de Alumínio , Humanos , Nanopartículas/química , Dióxido de Silício/química
6.
Chemistry ; 27(66): 16429-16439, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34651355

RESUMO

The study of hydrogen bonding interactions at the level of functionalized nanoparticles remains highly challenging and poorly explored area. In this work, superparamagnetic iron oxide nanoparticles (SPIONs) were orthogonally functionalized using receptors bearing multiple hydrogen bonding motifs. Pristine SPIONs were modified by wet chemical processes with Hamilton receptors (hosts), or cyanurate-guest molecules linked to phosphonic acid moieties for monolayer functionalization. The modified surfaces were fully characterized and the number of attached ligands on the surface were determined. The host-guest interactions on the interface of modified SPIONs were investigated by using UV-Vis spectroscopic titrations. Functionalized SPIONs demonstrated two to three magnitudes stronger binding affinities as compared to the related molecular interactions in solution due to synergistic effects on complex surface environment. Higher supramolecular binding ratios of host-guest interactions on the modified surface were emerged. These studies provide fundamental insights into supramolecular complexations on the surface at solid-liquid interface systems with applications in engineered nanomaterials, nano-sensing devices, and drug delivery systems.


Assuntos
Nanopartículas , Nanopartículas Magnéticas de Óxido de Ferro
7.
ACS Appl Mater Interfaces ; 13(27): 32461-32466, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34213306

RESUMO

Semiconducting self-assembled monolayers (SAMs) represent highly relevant components for the fabrication of organic thin-film electronics because they enable the precise formation of active π-conjugates in terms of orientation and layer thickness. In this work, we demonstrate self-assembled monolayer field-effect transistors (SAMFETs) composed of phosphonic acid oligomers of 3-hexylthiophene (oligothiophenes-OT) with systematic variations of thiophene repeating units (5, 10, and 20). The devices exhibit stable lateral charge transport with increased mobility as a function of thiophene unit counts. Importantly, our work reveals the packing and intermolecular order of varied-chain-length SAMs at the molecular scale via X-ray reflectivity (XRR) and quantitative X-ray photoelectron spectroscopy (XPS). Short oligomers (OT5-PA and OT10-PA) arrange almost perpendicular to the substrate, forming highly ordered SAMs, whereas the long-chain OT20-PA exhibits a folded structure. By tuning the molecular order in the monolayers via the SAM substitution reaction, the OT20-PA devices show a tripling in mobility.

8.
Adv Mater ; 33(31): e2101653, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34173280

RESUMO

Rational patterning and tailoring of graphene relies on the disclosure of suitable reagents for structuring the target functionalities on the 2D-carbon network. Here, a series of hypervalent iodine compounds, namely, 1-chloro-1,2-benziodoxol-3(1H)-one, 1,3-dihydro-1-hydroxy-3,3-dimethyl-1,2-benziodoxole, and 3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole is reported to be extremely efficient for a diversified graphene patterning. The decomposition of these compounds generates highly reactive Cl, OH, and CF3 radicals exclusively in the irradiated areas, which subsequently attach onto the graphene leading to locally controlled chlorination, hydroxylation, and trifluoromethylation, respectively. This is the first realization of a patterned hydroxylation of graphene, and the degrees of functionalization of the patterned chlorination and trifluoromethylation are both unprecedented. The usage of these mild reagents here is reasonably facile compared to the reported methods using hazardous Cl2 or ICl and allows for sophisticated pattern designs with nanoscale precision, promising for arbitrary nanomanipulation of graphene's properties like hydrophilicity and conductivity by the three distinct functionalities (Cl, OH, and CF3 ). Moreover, the attachment of functional entities to these highly functionalized graphene nanoarchitectures is fully reversible upon thermal annealing, enabling a full writing/storing/reading/erasing control over the chemical information stored within graphene. This work provides an exciting clue for target 2D functionalization and modulation of graphene by using suitable hypervalent iodine compounds.

9.
Chemistry ; 27(34): 8709-8713, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33769649

RESUMO

A very facile and efficient protocol for the covalent patterning and properties tuning of graphene is reported. Highly reactive fluorine radicals were added to confined regions of graphene directed by laser writing on graphene coated with 1-fluoro-3,3-dimethylbenziodoxole. This process allows for the realization of exquisite patterns on graphene with resolutions down to 200 nm. The degree of functionalization, ranging from the unfunctionalized graphene to extremely high functionalized graphene, can be precisely tuned by controlling the laser irradiation time. Subsequent substitution of the initially patterned fluorine atoms afforded an unprecedented graphene nanostructure bearing thiophene groups. This substitution led to a complete switch of both the electronic structure and the polarization within the patterned graphene regions. This approach paves the way towards the precise modulation of the structure and properties of nanostructured graphene.

10.
Chempluschem ; 85(5): 921-926, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32401434

RESUMO

The synthesis of a series of unsymmetrical derivatives of pentacene appended with functionalized anthracene moieties is reported. These anthracene-pentacene dyads have been characterized by UV-vis spectroscopy and cyclic voltammetry to examine their electronic properties. X-ray crystallographic analysis was used to examine the solid-state features of anthracene-pentacene dyads 1 a-d with H-, F-, Cl-, and Br- substituents on the 9-position of anthracene, and shows that the packing arrangement of anthracene-pentacene derivatives 1 b,d,e are remarkably similar irrespective of the presence of fluoride, bromide or methyl substituents. The pentacene-anthracene dyads have been incorporated into OTFTs to evaluate their semiconducting properties. The pentacene derivative 1 b shows ambipolar behavior using AlOx C14 PA as the gate dielectric (electron and hole mobilities of 7.6 ⋅ 10-3 and 1.6 ⋅ 10-1  cm2 V-1 s-1 ), while performance of all derivatives was poor using p-doped Silicon as the substrate. These studies highlight the importance of thin-film formation over molecular structure.

11.
Angew Chem Int Ed Engl ; 59(17): 6700-6705, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32107875

RESUMO

Patterned functionalization can, on the one hand, open the band gap of graphene and, on the other hand, program demanding designs on graphene. The functionalization technique is essential for graphene-based nanoarchitectures. A new and highly efficient method was applied to obtain patterned functionalization on graphene by mild fluorination with spatially arranged AgF arrays on the structured substrate. Scanning Raman spectroscopy (SRS) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) were used to characterize the functionalized materials. For the first time, chemical patterning on the bottom side of graphene was realized. The chemical nature of the patterned functionalization was determined to be the ditopic scenario with fluorine atoms occupying the bottom side and moieties, such as oxygen-containing groups or hydrogen atoms, binding on the top side, which provides information about the mechanism of the fluorination process. Our strategy can be conceptually extended to pattern other functionalities by using other reactants. Bottom-side patterned functionalization enables utilization of the top side of a material, thereby opening up the possibilities for applications in graphene-based devices.

12.
Small ; 16(2): e1903729, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778297

RESUMO

Precise control over the ratio of perylene bisimide (PBI) monomers and aggregates, immobilized on alumina nanoparticle (NP) surfaces, is demonstrated. Towards this goal, phosphonic acid functionalized PBI derivatives (PA-PBI) are shown to self-assemble into stoichiometrically mixed monolayers featuring aliphatic, glycolic, or fluorinated phosphonic acid ligands, serving as imbedding matrix (PA-M) to afford core-shell NPs. Different but, nevertheless, defined PBI monomer/aggregate composition is achieved by either the variation in the PA-PBI to PA-M ratios, or the utilization of different PA-Ms. Various steady-state as well as time-resolved spectroscopy techniques are applied to probe the core-shell NPs with respect to changes in their optical properties upon variations in the shell composition. To this end, the ratio between monomer and excimer-like emission assists in deriving information on the self-assembled monolayer composition, local ordering, and corresponding aggregate content. With the help of X-ray reflectivity measurements, accompanied by molecular dynamics simulations, the built-up of the particle shells, in general, and the PBI aggregation behavior, in particular, are explored in depth.

13.
ACS Nano ; 13(2): 2389-2397, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30706709

RESUMO

Colloidal nanocrystals from PbS are successfully applied in highly sensitive infrared photodetectors with various device architectures. Here, we demonstrate all-printed devices with high detectivity (∼1012 cm Hz1/2/W) and a cut-off frequency of >3 kHz. The low material consumption (<0.3 mg per detector) and short processing time (14 s per detector) enabled by the automated printing promises extremely low device costs. To enable all-printed devices, an ink formulation was developed based on nanocrystals stabilized by perovskite-like methylammonium iodobismuthate ligands, which are dispersed in a ternary solvent. Fully inkjet printed devices based on this solvent were achieved with printed silver electrodes and a ZnO interlayer. Considerable improvements were obtained by the addition of small amounts of the polymer poly(vinylpyrrolidone) to the ink. The polymer improved the colloidal stability of the ink and its film-formation properties and thus enabled the scalable printing of single detectors and detector arrays. While photoconductors were shown here, the developed ink will certainly find application in a series of further electronic devices based on nanocrystals from a broad range of materials.

14.
Chemistry ; 24(51): 13589-13595, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29992658

RESUMO

We report on the development of a supramolecular nanocarrier concept that allows for the encapsulation and separation of small apolar molecules from water. The nanocarriers consist of shell-by-shell-coated nanoparticles such as TiO2 and ferromagnetic Fe3 O4 . The first ligand shell is provided by covalently bound hexadecyl phosphonic acid (PAC16 ) and the second shell by noncovalently assembled amphiphiles rendering the hybrid architecture soluble in water. Agitation of these constructs with water containing the hydrocarbons G1-G4, the fluorescent marker G5, the polychlorinated biphenyl PCB 77, or crude oil leads to a very efficient uptake (up to 411 %) of the apolar contaminant. In case of the hybrids containing a Fe3 O4 core, straightforward phase separation by the action of an external magnet is provided. The load can easily be released by a final treatment with an organic solvent.

15.
ChemistryOpen ; 7(4): 277, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29657912

RESUMO

Invited for this month's cover picture is the group of Prof. Dr. Andreas Hirsch from Friedrich Alexander University (Germany). The cover picture shows shell-by-shell coated nanoparticle 'chameleons'-wet-chemically surface-modified nanoparticles that can reversibly adjust their dispersibility to entirely orthogonal solvent environments. Read the full text of their Full Paper at https://doi.org/10.1002/open.201800011.

16.
ChemistryOpen ; 7(4): 282-287, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29657914

RESUMO

We describe a universal wet-chemical shell-by-shell coating procedure resulting in colloidal titanium dioxide (TiO2) and iron oxide (Fe3O4) nanoparticles with dynamically and reversibly tunable surface energies. A strong covalent surface functionalization is accomplished by using long-chained alkyl-, triethylenglycol-, and perfluoroalkylphosphonic acids, yielding highly stabilized core-shell nanoparticles with hydrophobic, hydrophilic, or superhydrophobic/fluorophilic surface characteristics. This covalent functionalization sequence is extended towards a second noncovalent attachment of tailor-made nonionic amphiphilic molecules to the pristine coated core-shell nanoparticles via solvophobic (i.e. either hydrophobic, lipophobic, or fluorophobic) interactions. Thereby, orthogonal tuning of the surface energies of nanoparticles via noncovalent interactions is accomplished. As a result, this versatile bilayer coating process enables reversible control over the colloidal stability of the metal oxide nanoparticles in fluorocarbons, hydrocarbons, and water.

17.
Small ; 14(21): e1704111, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29667293

RESUMO

Efficient magnetic reactive oxygen species (ROS) formation enhancing agents after X-ray treatment are realized by functionalizing superparamagnetic magnetite (Fe3 O4 ) and Co-ferrite (CoFe2 O4 ) nanoparticles with self-assembled monolayers (SAMs). The Fe3 O4 and CoFe2 O4 nanoparticles are synthesized using Massart's coprecipitation technique. Successful surface modification with the SAM forming compounds 1-methyl-3-(dodecylphosphonic acid) imidazolium bromide, or (2-{2-[2-hydroxy-ethoxy]-ethoxy}-ethyl phosphonic acid provides biocompatibility and long-term stability of the Fe3 O4 and CoFe2 O4 nanoparticles in cell media. The SAM-stabilized ferrite nanoparticles are characterized with dynamic light scattering, X-ray powder diffraction, a superconducting quantum interference device, Fourier transform infrared attenuated total reflectance spectroscopy, zeta potential measurements, and thermogravimetric analysis. The impact of the SAM-stabilized nanoparticles on the viability of the MCF-7 cells and healthy human umbilical vein endothelial cells (HUVECs) is assessed using the neutral red assay. Under X-ray exposure with a single dosage of 1 Gy the intracellular SAM stabilized Fe3 O4 and CoFe2 O4 nanoparticles are observed to increase the level of ROS in MCF-7 breast cancer cells but not in healthy HUVECs. The drastic ROS enhancement is associated with very low dose modifying factors for a survival fraction of 50%. This significant ROS enhancement effect by SAM-stabilized Fe3 O4 and CoFe2 O4 nanoparticles constitutes their excellent applicability in radiation therapy.


Assuntos
Materiais Biocompatíveis/química , Neoplasias da Mama/radioterapia , Cobalto/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Espécies Reativas de Oxigênio/metabolismo , Água/química , Sobrevivência Celular , Cobalto/análise , Difusão Dinâmica da Luz , Feminino , Fluoresceínas/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imidazóis/química , Íons , Nanopartículas de Magnetita/ultraestrutura , Eletricidade Estática
18.
ACS Appl Mater Interfaces ; 10(6): 5511-5518, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29355018

RESUMO

Current-voltage hysteresis is a major issue for normal architecture organo-halide perovskite solar cells. In this manuscript we reveal a several-angstrom thick methylammonium iodide-rich interface between the perovskite and the metal oxide. Surface functionalization via self-assembled monolayers allowed us to control the composition of the interface monolayer from Pb poor to Pb rich, which, in parallel, suppresses hysteresis in perovskite solar cells. The bulk of the perovskite films is not affected by the interface engineering and remains highly crystalline in the surface-normal direction over the whole film thickness. The subnanometer structural modifications of the buried interface were revealed by X-ray reflectivity, which is most sensitive to monitor changes in the mass density of only several-angstrom thin interfacial layers as a function of substrate functionalization. From Kelvin probe force microscopy study on a solar cell cross section, we further demonstrate local variations of the potential on different electron-transporting layers within a solar cell. On the basis of these findings, we present a unifying model explaining hysteresis in perovskite solar cells, giving an insight into one crucial aspect of hysteresis for the first time and paving way for new strategies in the field of perovskite-based opto-electronic devices.

19.
Science ; 358(6367): 1192-1197, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29123021

RESUMO

A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WO x )/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WO x -doped interface-based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.

20.
Nanoscale ; 9(47): 18584-18589, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29164227

RESUMO

The use of functional oligomers of π-conjugated oligofluorenes led to a region-selective assembly of amorphous monolayers which exhibit robust lateral charge transport pathways in self-assembled monolayer field-effect transistors over long distances and even in mixed monolayers of semiconducting and insulating molecules. This oligomer concept might stimulate a new molecular design of self-assembling semiconducting materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...